
Giuseppe DeCandia, Deniz Hastorun, Madan 
Jampani, Gunavardhan Kakulapati, Avinash 
Lakshman, Alex Pilchin, Swaminathan 
Sivasubramanian, Peter Vosshall and Werner 
Vogels 
Amazon.com 
 
 
Presented by Yogi Joshi. 
 



 High availability among failures of 
number of components. 

 High scalability to facilitate growth. 

 High performance. 

 Strict control over the tradeoffs 
between consistency, availability, 
cost and performance 

 Ability to configure such tradeoff as 
per the need of the applications. 



 Simple usage pattern : Only primary 
key access to data store.  

 Examples : Shopping carts, Session 
management, Catalogs, etc.  

 No complex querying is needed. 
 Higher cost of maintaining a RDBMS. 
 Most of the RDBMS systems choose 

consistency over availability. 
 Limited replication options. 
 Not easy to scale. 

 



 Demonstration of blending different 
techniques in a single system to 
meet the goals. 

 Tuning different techniques to meet 
the diverse needs of different 
services. 

 Successful and extensive usage of 
eventual consistency. 
 



 Query model is simple. 

 Weaker consistency is ok. 

 

 SLAs drive the stringent latency 
requirements,  measured at 99.9th 
percentile of the distribution. 

 Configurability of the tradeoffs. 

 Only internal usage of Dynamo. 



 Use of eventual consistency for high 
availability. 

 Conflict resolution is done at the 
time of ‘read’ operation.  Example : 
Shopping carts. 

 Flexible conflict resolution by the 
data store or the application itself. 

 Incremental scalability, Symmetry, 
Decentralization and Heterogeneity. 
 





 Get() and put() operations 

 Get(key) 

 Put(key, context, object) 

 Context – metadata information 
such as object version 

 Key is hashed using MD5 to identify 
the storage node for the key. 



 Consistent hashing – output range of the 
function is a circular space. 

 Each system node is assigned a position 
in the circular space. 

 Key is hashed to identify its position in 
the circular space. 

 A node is responsible for the keys 
between its predecessor and itself. 

 Virtual nodes in order  to account for 
uniform load distribution and 
heterogeneity. 



{ 1, 2 } 

{ 2,3,5,6 } 



 Each key has a coordinator node. 

 

 The coordinator node replicates its keys to N-1 

successive nodes on the ring when traversing 
in clockwise direction. 

 

 A set of nodes, responsible for storing a key, 
constitute a ‘preference list’ of that key. 

 

 A ‘preference list’ contains N distinct physical 
nodes. 

 



 Required due to eventual consistency 
mechanisms. 

 Each modification of an object involves writing 
a new version. This causes multiple versions. 

 Both systemic and application driven 
reconciliation. 

 Vector clock  - list of (node, counter).  

 Client has to specify the version by passing the 
‘context’ of earlier ‘read’. 

 Size of vector clock is truncated periodically by 
keeping only a certain number of tuples. This 
can cause issues during reconciliation. 





 Request  is routed via load balancer or 
client is aware of the partitions. 

 A coordinator is the first node in the 
preference list, and it serves the request. 

 Consistency protocol like quorum 
systems. 

 R , W i.e. read and write quorum sizes 
are configurable. 

 A set of nodes in the preference list are 
accessed for the read and write 
operations.  
 



 No strict quorum membership . This 
helps to tackle failures. 

 If a node fails, the replicas supposed to 
be handled by it, are handed over to a 
different node in the ring with a ‘hint’. 

 Once the failed node recovers, the ‘hint’ 
helps to relocate the previously moved 
replicas to that node.  

 Replicas are stored across multiple data 
centers. 



 Merkle Trees – Leaves are hashes of the 
values of individual keys, and parents 
are hashes of their individual children. 

 A Merkle tree for each range of keys. 

 Comparison involves only a part of the 
tree to be downloaded. For example: 
Only the root is downloaded initially. 

 If two trees between the nodes are not in 
‘sync’ then they are brought in sync 
using anti-entropy. 
 



 Administrator adds/removes nodes in the ring. 

 The membership changes are persistently 
stored by the nodes. 

 Gossip based protocol to propagate these 
changes in the ring. 

 Each node contacts its peers randomly to 
download the ‘membership’ changes. 

 This involves propagation of partitioning and 
placement information. 

 Eventual reconciliation of membership 
information. 

 Gossip based protocol subsumes global failure 
detection. 



 Choice of different storage engines such 
as MySQL, BDB, etc. 

 Coordinator acts on behalf of the clients. 

 A state machine gets created on the node, 
where a client’s request arrives. 

 Use of ‘read-repairs’ to update stale 
versions with the latest copy. 

 The write operations is done on the 
replica, which responded fastest to the 
last read operation. 



 Business logic specific 
reconciliation. 

 Timestamp based reconciliation. 

 High performance read engines. 

 Tuning of the read, write 
quorums sizes and replication 
factor. 



 Diurnal pattern due to the difference between 
the request rates between daytime and 
nighttime. 

 99.9th percentile latencies are much higher than 
the average latencies. 

 So, ‘Object buffer’ optimization is used, where 
the data is written to buffer in the replicas, but 
at least one replica has the data written to the 
persistent storage. 

 The improvement shows lowering 99.9th 
percentile latency by a factor of 5.  



 The number of ‘overloaded’ nodes 
increase as the number of requests 
increase. 

 This happens because ‘popular’ keys are 
accessed more frequently when the 
number of requests grow. 

 Further, during low loads, the number of 
‘overloaded’ nodes increase as fewer 
popular keys are accessed, and this 
causes load imbalance. 





 Tokens ordered by their values in the 
hash space. 

 T randomly chosen tokens are assigned 
to a node. 

 Bootstrapping is inefficient. 

 Complicated archival due to random key 
ranges. 

 Recalculating Merkle trees is inefficient 
as multiple key ranges are changed when 
a node joins or leaves the system. 



 Hash space divided into Q equally 
sized partitions 

 Each of the S nodes is assigned T 
random tokens. 

 Partition placement is independent 
of partitioning scheme. 

 Placement scheme can be changed at 
runtime. 



 Hash space divided into Q equally 
sized partitions 

 Each of the S nodes is assigned Q/S 
tokens. 

 Addition and removal of nodes is 
easy, and involves minimal changes 
to the membership information. 



 Third strategy is the most efficient 
strategy. 

 Bootstrapping is easy as  the ranges are 
fixed, so no need to access a node’s 
membership information for 
bootstrapping. 

 Same applies to the archival. 

 Third strategy requires extra 
coordination while adding or removing a 
node in order to preserve the property. 
 



 Load balancer  is used in server driven 
coordination. 

 In client driven approach, the client application 
polls a node  and downloads the membership 
information from, and it routes the requests 
accordingly. 

 Client driven approach reduces the latency as 
server need not run the load balancer. 

 Background tasks are scheduled after cleared by 
an admission controller. 

 This controller checks latencies, queue wait times 
to assess resource availability for foreground tasks. 

 



 Ability to ‘tune’ the attributes such as 
consistency, availability and latency as per the 
application need. This enables scalability in 
terms of different application domains. 

 Extensive usage of asynchronous tasks such as 
read-repairs and efficient replica 
synchronization, which reduce window of 
inconsistency in case of partial quorums. 

 Emphasis on 99.9th percentile latency along 
with scalability. This assures that each segment 
of the consumers is duly taken into account  i.e. 
truly “always-on” experience for almost all the 
clients. 



 No empirical results on the scalability, when the nodes 
are added or removed. How to estimate the efficiency 
to coordinate the removal/addition of a node ? More 
evidence needed about the corresponding latency 
values as well. 

 Empirical results are based on a single strict quorum 
configuration. Analysis on partial quorums would 
make comprehensive discussion on the configurable 
tradeoffs for consistency and latency. 

 No details about the execution of admission controller 
for background tasks. Does its constant execution affect 
the efficiency of foreground tasks ? Any empirical 
evidence to support its effectiveness ? 

 Not enough information on the consistent hashing 
function(s)  with reference to partitioning. 

 Minor clarity issues related to the usage of English. 
 

 
  



 Usage of Merkle trees for propagating and 
comparing  the membership and range 
information will enable more scalability in 
terms of number of nodes in a ring. 

 

 Isolation of the ‘Admission controller’ to 
separate processing unit to provide efficient 
monitoring of important system attributes. 




