JYNAMO: AMAZON’S
F1GHLY AVAILABLE KEY-
VALUE STORE

ype DeCandia, Deniz Hastorun, Madan
i, Gunavardhan Kakulapati, Avinash

an, Alex Pilchin, Swaminathan

ramanian, Peter Vosshall and Werner

——

AMNAazo om

Presented by Yogi Joshi.



cdo the applications
demand?

ailability among failures of
| oponents.

ween consistency, availability,
and performance

- Ability to configure such tradeoff as
per the need of the applications.



hy not RDBMS ?

ge pattern : Only primary
data store.

ing carts, Session
logs, etc.

omplex querying is needed.
er cost of maintaining a RDBMS.

t of the RDBMS systems choose
consistency over availability.

‘@ Limited replication options.
= Not easy to scale.




tion of blending different
n a single system to

B Successful and extensive usage of
eventual consistency.



ASsumptions and Requirements

nodel is simple.
1sistency is ok.

As drive the stringent latency
Juirements, measured at 99.9th
percentile of the distribution.

1 Configurability of the tradeoffs.
1 Only internal usage of Dynamo.




esign Considerations

entual consistency for high

onflict resolution is done at the
e of ‘read” operation. Example :
opping carts.

ible conflict resolution by the
data store or the application itself.

@ Incremental scalability, Symmetry,
Decentralization and Heterogeneity.



System Architecture

Problem

Technique

Advantage

Partitioning

Consistent Hashing

Incremental
Scalability

High Availability
for writes

Vector clocks with
reconciliation during
reads

Version size 15
decoupled from
update rates.

Handling temporary
failures

Sloppy Quorum and
hinted handoff

Provides high
availability and
durability guarantee
when some of the

replicas are not
available.

Recovering from
permanent failures

Anti-entropy using
Merkle trees

Synchromzes
divergent replicas 1n
the background.

Membership and
failure detection

Gossip-based
membership protocol
and failure detection.

Preserves symmetry
and avoids having a
centralized registry
for storing
membership and
node liveness
mformation.




Interface

ut() operations

as object version

= Key is hashed using MD5 to identity
~ the storage node for the key.



Jata partitioning

ent hashing - output range of the
a circular space.

0de is assigned a position

is hashed to identify its position in
ircular space.

ode is responsible for the keys
between its predecessor and itself.

'm Virtual nodes in order to account for
uniform load distribution and
heterogeneity.



Advantages of Virtual Nodes

Kev K
1,2

NodesB. C
¢ and D store
| keys in
. range (A B)
 including

K.




eplication
coordinator node.

‘ replicates its keys to N-1
sive nodes on ing when traversing

kwise direction.

nodes, responsible for storing a key,
constitute a “preference list’ of that key.

= A ‘preference list’ contains N distinct physical
nodes.



ject Versioning

due to eventual consistency

n of an object involves writing
causes multiple versions.

systemic and application driven

ciliation.

or clock - list of (node, counter).

= has to specify the version by passing the

‘context’ of earlier ‘read’.

‘@ Size of vector clock is truncated periodically by
keeping only a certain number of tuples. This
can cause issues during reconciliation.



Example - Vector clocks

write
handled by Sx

D1 ([Sx,1])

wrile
handled by Sx

D2 ([Sx,2])

write write
handled by Sy handied by Sz

D3 ([Sx,2],[Sy.1]) D4 ([Sx,2],[Sz,1])

reconciled
and written by
Sx

D5 ([Sx,3L.[Sy,11[Sz,1])

Figure 3: Version evolution of an object over time.




cution of get() and put()
is routed via load balancer or
are of the partitions.

1s the first node in the

sistency protocol like quorum
ms.

i.e. read and write quorum sizes
are configurable.

"= A set of nodes in the preference list are
accessed for the read and write
operations.



inted handoff

quorum membership . This

erent node in the ring with a “hint’.

the failed node recovers, the “hint’
ielps to relocate the previously moved
replicas to that node.

‘= Replicas are stored across multiple data
centers.



liIca synchronization

rees — .eaves are hashes of the
dividual keys, and parents
eir individual children.

Merkle tree for each range of keys.

nparison involves only a part of the
to be downloaded. For example:
\ - the root is downloaded initially.

= If two trees between the nodes are not in
‘sync” then they are brought in sync
using anti-entropy.



ership and failures

istrator adds/removes nodes in the ring.
rship changes are persistently

node contacts its peers randomly to
load the ‘membership” changes.
involves propagation of partitioning and
ment information.

‘B Eventual reconciliation of membership
information.

= Gossip based protocol subsumes global failure
detection.



Implementation

ifferent storage engines such

ate machine gets created on the node,
re a client’s request arrives.

of ‘read-repairs’ to update stale
1ons with the latest copy.

‘@ The write operations is done on the
replica, which responded fastest to the
last read operation.



jences and lessons

 logic specific

d reconciliation.
*h performance read engines.

| ning of the read, write
. quorums sizes and replication
factor.



Object buffer’ optimization is used, where
data is written to buffer in the replicas, but
east one replica has the data written to the
persistent storage.

‘@ The improvement shows lowering 99.9th
percentile latency by a factor of .



mpirical results - Uniformity
Ofathe load distribution

of ‘overloaded’ nodes
umber of requests

s happens because ‘popular’ keys are
essed more frequently when the
- number of requests grow.

- @ Further, during low loads, the number of
- ‘overloaded’” nodes increase as fewer
popular keys are accessed, and this
causes load imbalance.



Evolotion of partitioning
schemes

Strﬂtegy 1 Strategy 2 Strate gy 3

Figure 7: Partitioning and placement of Keys in the three strategies. A, B, and C depict the three unique nodes that form the
preference list for the key k1 on the consistent hashing ring (N=3). The shaded area indicates the key range for which nodes A,
B, and C form the preference list. Dark arrows indicate the token locations for various nodes.




| ra 1d0m tokens per node and
partition by token

value:
dered by their values in the

en tokens are assigned

tstrapping is inefficient.
plicated archival due to random key

@ Recalculating Merkle trees is inefficient
as multiple key ranges are changed when
a node joins or leaves the system.



lavandom tokens per node and
ogual sized partitions
e divided into Q equally

les is assigned T
dom tokens.

tition placement is independent
partitioning scheme.

‘@ Placement scheme can be changed at
runtime.



s per node, equal-sized
partitions

e divided into Q equally

~ to the membership information.



parison of strategies
egy is the most efficient

| Ng is easy as the ranges are
d so no need to access a node’s

nbership information for

tstrapping.

me applies to the archival.

strategy requires extra

coordination while adding or removing a
node in order to preserve the property.




tion and background
tasks

er 1s used in server driven

roach, the client application

: driven approach reduces the latency as
r need not run the load balancer.

m Background tasks are scheduled after cleared by
an admission controller.

= This controller checks latencies, queue wait times
to assess resource availability for foreground tasks.



.~
Critique - Strengths

‘tune’ the attributes such as
availability and latency as per the
d. This enables scalability in
application domains.

tensive usage of asynchronous tasks such as
d-repairs and efficient replica

hronization, which reduce window of
nsistency in case of partial quorums.

= Emphasis on 99.9t" percentile latency along
with scalability. This assures that each segment
of the consumers is duly taken into account i.e.
truly “always-on” experience for almost all the
clients.

\




Critique - Weakness

irical results on the scalability, when the nodes
or removed. How to estimate the efficiency
the removal /addition of a node ? More
d about the corresponding latency

pirical results are based on a single strict quorum
iguration. Analysis on partial quorums would

e comprehensive discussion on the configurable
eoffs for consistency and latency.

etails about the execution of admission controller
ackground tasks. Does its constant execution affect
e efficiency of foreground tasks ? Any empirical
] evidence to support its effectiveness ?

= Not enough information on the consistent hashing
function(s) with reference to partitioning.

= Minor clarity issues related to the usage of English.




xtensions

erkle trees for propagating and
e membership and range
enable more scalability in

on of the ‘Admission controller’ to
fe processing unit to provide efficient
ring of important system attributes.






