
Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall and Werner
Vogels
Amazon.com

Presented by Yogi Joshi.

 High availability among failures of
number of components.

 High scalability to facilitate growth.

 High performance.

 Strict control over the tradeoffs
between consistency, availability,
cost and performance

 Ability to configure such tradeoff as
per the need of the applications.

 Simple usage pattern : Only primary
key access to data store.

 Examples : Shopping carts, Session
management, Catalogs, etc.

 No complex querying is needed.
 Higher cost of maintaining a RDBMS.
 Most of the RDBMS systems choose

consistency over availability.
 Limited replication options.
 Not easy to scale.

 Demonstration of blending different
techniques in a single system to
meet the goals.

 Tuning different techniques to meet
the diverse needs of different
services.

 Successful and extensive usage of
eventual consistency.

 Query model is simple.

 Weaker consistency is ok.

 SLAs drive the stringent latency
requirements, measured at 99.9th
percentile of the distribution.

 Configurability of the tradeoffs.

 Only internal usage of Dynamo.

 Use of eventual consistency for high
availability.

 Conflict resolution is done at the
time of ‘read’ operation. Example :
Shopping carts.

 Flexible conflict resolution by the
data store or the application itself.

 Incremental scalability, Symmetry,
Decentralization and Heterogeneity.

 Get() and put() operations

 Get(key)

 Put(key, context, object)

 Context – metadata information
such as object version

 Key is hashed using MD5 to identify
the storage node for the key.

 Consistent hashing – output range of the
function is a circular space.

 Each system node is assigned a position
in the circular space.

 Key is hashed to identify its position in
the circular space.

 A node is responsible for the keys
between its predecessor and itself.

 Virtual nodes in order to account for
uniform load distribution and
heterogeneity.

{ 1, 2 }

{ 2,3,5,6 }

 Each key has a coordinator node.

 The coordinator node replicates its keys to N-1

successive nodes on the ring when traversing
in clockwise direction.

 A set of nodes, responsible for storing a key,
constitute a ‘preference list’ of that key.

 A ‘preference list’ contains N distinct physical
nodes.

 Required due to eventual consistency
mechanisms.

 Each modification of an object involves writing
a new version. This causes multiple versions.

 Both systemic and application driven
reconciliation.

 Vector clock - list of (node, counter).

 Client has to specify the version by passing the
‘context’ of earlier ‘read’.

 Size of vector clock is truncated periodically by
keeping only a certain number of tuples. This
can cause issues during reconciliation.

 Request is routed via load balancer or
client is aware of the partitions.

 A coordinator is the first node in the
preference list, and it serves the request.

 Consistency protocol like quorum
systems.

 R , W i.e. read and write quorum sizes
are configurable.

 A set of nodes in the preference list are
accessed for the read and write
operations.

 No strict quorum membership . This
helps to tackle failures.

 If a node fails, the replicas supposed to
be handled by it, are handed over to a
different node in the ring with a ‘hint’.

 Once the failed node recovers, the ‘hint’
helps to relocate the previously moved
replicas to that node.

 Replicas are stored across multiple data
centers.

 Merkle Trees – Leaves are hashes of the
values of individual keys, and parents
are hashes of their individual children.

 A Merkle tree for each range of keys.

 Comparison involves only a part of the
tree to be downloaded. For example:
Only the root is downloaded initially.

 If two trees between the nodes are not in
‘sync’ then they are brought in sync
using anti-entropy.

 Administrator adds/removes nodes in the ring.

 The membership changes are persistently
stored by the nodes.

 Gossip based protocol to propagate these
changes in the ring.

 Each node contacts its peers randomly to
download the ‘membership’ changes.

 This involves propagation of partitioning and
placement information.

 Eventual reconciliation of membership
information.

 Gossip based protocol subsumes global failure
detection.

 Choice of different storage engines such
as MySQL, BDB, etc.

 Coordinator acts on behalf of the clients.

 A state machine gets created on the node,
where a client’s request arrives.

 Use of ‘read-repairs’ to update stale
versions with the latest copy.

 The write operations is done on the
replica, which responded fastest to the
last read operation.

 Business logic specific
reconciliation.

 Timestamp based reconciliation.

 High performance read engines.

 Tuning of the read, write
quorums sizes and replication
factor.

 Diurnal pattern due to the difference between
the request rates between daytime and
nighttime.

 99.9th percentile latencies are much higher than
the average latencies.

 So, ‘Object buffer’ optimization is used, where
the data is written to buffer in the replicas, but
at least one replica has the data written to the
persistent storage.

 The improvement shows lowering 99.9th
percentile latency by a factor of 5.

 The number of ‘overloaded’ nodes
increase as the number of requests
increase.

 This happens because ‘popular’ keys are
accessed more frequently when the
number of requests grow.

 Further, during low loads, the number of
‘overloaded’ nodes increase as fewer
popular keys are accessed, and this
causes load imbalance.

 Tokens ordered by their values in the
hash space.

 T randomly chosen tokens are assigned
to a node.

 Bootstrapping is inefficient.

 Complicated archival due to random key
ranges.

 Recalculating Merkle trees is inefficient
as multiple key ranges are changed when
a node joins or leaves the system.

 Hash space divided into Q equally
sized partitions

 Each of the S nodes is assigned T
random tokens.

 Partition placement is independent
of partitioning scheme.

 Placement scheme can be changed at
runtime.

 Hash space divided into Q equally
sized partitions

 Each of the S nodes is assigned Q/S
tokens.

 Addition and removal of nodes is
easy, and involves minimal changes
to the membership information.

 Third strategy is the most efficient
strategy.

 Bootstrapping is easy as the ranges are
fixed, so no need to access a node’s
membership information for
bootstrapping.

 Same applies to the archival.

 Third strategy requires extra
coordination while adding or removing a
node in order to preserve the property.

 Load balancer is used in server driven
coordination.

 In client driven approach, the client application
polls a node and downloads the membership
information from, and it routes the requests
accordingly.

 Client driven approach reduces the latency as
server need not run the load balancer.

 Background tasks are scheduled after cleared by
an admission controller.

 This controller checks latencies, queue wait times
to assess resource availability for foreground tasks.

 Ability to ‘tune’ the attributes such as
consistency, availability and latency as per the
application need. This enables scalability in
terms of different application domains.

 Extensive usage of asynchronous tasks such as
read-repairs and efficient replica
synchronization, which reduce window of
inconsistency in case of partial quorums.

 Emphasis on 99.9th percentile latency along
with scalability. This assures that each segment
of the consumers is duly taken into account i.e.
truly “always-on” experience for almost all the
clients.

 No empirical results on the scalability, when the nodes
are added or removed. How to estimate the efficiency
to coordinate the removal/addition of a node ? More
evidence needed about the corresponding latency
values as well.

 Empirical results are based on a single strict quorum
configuration. Analysis on partial quorums would
make comprehensive discussion on the configurable
tradeoffs for consistency and latency.

 No details about the execution of admission controller
for background tasks. Does its constant execution affect
the efficiency of foreground tasks ? Any empirical
evidence to support its effectiveness ?

 Not enough information on the consistent hashing
function(s) with reference to partitioning.

 Minor clarity issues related to the usage of English.

 Usage of Merkle trees for propagating and
comparing the membership and range
information will enable more scalability in
terms of number of nodes in a ring.

 Isolation of the ‘Admission controller’ to
separate processing unit to provide efficient
monitoring of important system attributes.

